Salahsatu cara yang digunakan untuk menyelesaikan sistem pertidaksamaan linear adalah metode grafik. Dengan menggambarkan pertidaksamaan ke dalam koordinat cartesius kita dapat melihat daerah himpunan penyelesaian atau daerah yang memenuhi pertidaksamaan tersebut. Untuk itu, tentu kita harus bisa mengubah pertidaksamaan linear yang diberikan
Jadisistem pertidaksamaan linear yang sesuai dengan grafik adalah : 2x + 3y ≤ 12, 2x + y ≥ 6, dan y ≥ 2. Note : Cara di atas hanya berlaku untuk grafik pada kuadran I dan IV. Untuk grafik sebelah kiri (kuadran II dan III), maka gunakan aturan kebalikannya, sebagai berikut :
Pembahasan Langkah pertama, cari persamaan garis h terlebih dahulu. Akibatnya persamaan garis h adalah. Selanjutnya uji titik (0, 0) untuk menguji daerah himpunan penyelesaiannya, yaitu: Karena (0,0) merupakan bagian dari daerah penyelesaian, maka pernyataan harus dibuat benar sehingga pertidaksamaannya menjadi: Jadi pertidaksamaan yang
Vay Tiền Nhanh Chỉ Cần Cmnd Nợ Xấu. Cari pertidaksamaan garis. Diketahui garis pembatas Cari letak DHP dengan uji suatu titik pada DHP untuk Kita tahu bahwa dan garis pembatas pada gambar tersebut adalah garis putus-putus sehingga maka pertidaksamaanya yaitu Selanjutnya cari pertidaksamaan lingkaran Diketahui titik pusat dan Persamaan lingkaran dengan titik pusat adalah maka persamaan dari lingkaran pada gambar adalah Cari pertidaksamaannya dengan uji suatu titik pada DHP untuk Kita tahu bahwa dan garis pembatas dari lingkaran tersebut adalah garis penuh sehingga maka pertidaksamaanya yaitu Jadi, sistem pertidaksamaan dari gambar tersebut yaitu Oleh karena itu, jawaban yang benar adalah A.
Mahasiswa/Alumni Institut Teknologi Sepuluh Nopember Surabaya07 November 2022 1857Jawaban yang benar adalah a. 2x + 5y ≤ 20, 11x + 2y ≤ 22, x ≥ 0, y ≥ 0 Ingat kembali Menentukan sistem pertidaksamaan linear dua variabel 1. Tentukan persamaan yang membatasi daerah penyelesaian atau persamaan garis. 2. Lakukan uji titik pada daerah penyelesaian untuk menentukan tanda pertidaksamaan. Jika garisnya berupa garis lurus maka tanda pertidaksamaannya adalah ≥ atau ≤ Jika garisnya berupa garis putus-putus maka tanda pertidaksamaannya adalah > atau < Persamaan garis yang melalui dua titik x1, y1 dan x2, y2 adalah y - y1/y2 - y1 = x - x1/x2 - x1 Pembahasan 1. Persamaan garis yang melalui titik 10,0 dan 0,4 y - y1/y2 - y1 = x - x1/x2 - x1 y - 0/4 - 0 = x - 10/0 - 10 y/4 = x - 10/-10 4x - 10 = -10Ây 4Âx - 4Â10 = -10y 4x - 40 = -10y 4x + 10y = 40 âž¡ï¸ kedua ruas dibagi 2 sehingga diperoleh 2x + 5y = 20 Uji titik 1,1 2x + 5y ....... 20 2Â1 + 5Â1 ..... 20 2 + 5 ........... 20 7 < 20 Karena garisnya berupa garis lurus maka pertidaksamaannya adalah 2x + 5y ≤ 20 2. Persamaan garis yang melalui titik 2,0 dan 0,11 y - y1/y2 - y1 = x - x1/x2 - x1 y - 0/11 - 0 = x - 2/0 - 2 y/11 = x - 2/-2 11x - 2= -2Ây 11Âx - 11Â2 = -2y 11x - 22 = -2y 11x + 2y = 22 Uji titik 1,1 11x + 2y ....... 22 11Â1 + 2Â1 .... 22 11 + 2 .......... 22 13 < 22 Karena garisnya berupa garis lurus maka pertidaksamaannya adalah 11x + 2y ≤ 22 3. Arsiran berada di sebelah kanan sumbu-y maka pertidaksamaannya adalah x ≥ 0 4. Arsiran berada di atas sumbu-x maka pertidaksamaannya adalah y ≥ 0 Jadi, sistem pertidaksamaan yang sesuai dengan grafik di atas adalah 2x + 5y ≤ 20, 11x + 2y ≤ 22, x ≥ 0, y ≥ 0 Oleh karena itu, jawaban yang benar adalah a
Jawaban yang benar adalah aIngat! Persamaan garis yang melalui b,0 dan 0,a adalah ax+by = abUntuk menentukan sistem pertidaksamaan linear dari daerah penyelesaian, tentukan persamaan-persamaan garis yang membatasi daerah penyelesaian tersebut, kemudian lakukan uji titik untuk menentukan tanda pertidaksamaan. Pertama, garis yang melalui 10,0 dan 0,4. Persamaan garis yang melalui 10,0 dan 0,4 adalah 4x + 10y = 402x + 5y = 20Uji titik Karena daerah yang diarsir adalah daerah yang memuat titik 0,0, maka 20 + 50 ... 20 0 ≤ 20Diperoleh pertidaksamaannya yaitu 2x + 5y ≤ 20. Kedua, garis yang melalui 2,0 dan 0,11. Persamaan garis yang melalui 2,0 dan 0,11 adalah 11x + 2y = 22Uji titik Karena daerah yang diarsir adalah daerah yang memuat titik 0,0, maka 11Â0+2Â0 ... 22 0 ≤ 22Diperoleh pertidaksamaannya yaitu 11x + 22y ≤ 22. Karena daerah yang diarsir adalah daerah di kuadran I, maka x ≥ 0 dan y ≥ 0. Jadi, sistem pertidaksamaan dari daerah yang diarsir adalah 2x + 5y ≤ 20, 11x + 22y ≤ 22, x ≥ 0, y ≥ 0. Pilihan jawaban yang benar adalah a.
sistem pertidaksamaan yang sesuai dengan grafik tersebut adalah